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Brief Reminder: AdS/CFT

The canonical example of gauge/gravity duality is Maldacena’s

duality (hep-th/9711200): a correspondence between N = 4

supersymmetric Yang-Mills theory and string theory on AdS5×S5.

The AdS space has a negative cosmological constant associated

with some flux through the extra dimensions.

Maldacena’s duality gives a concrete realization of ’t Hooft’s old

idea about 1/N expansions: α′ ∼ 1/
√

λ, gs ∼ g2
Y M . The string

theory is perturbative when the field theory is nonperturbative.

Ordinary QCD has N = 3, so α′ is large. The dual should be

highly curved, so naively it seems hopeless.
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Warped Space Notation

The metric of the AdS space can be written in an explicitly
conformally flat form as:

ds2 =
R2

z2
(ηµνdxµdxν − dz2), (1)

or (in different coordinates) e−2y/Rηµνdxµdxν − dy2 (with ey/R =
z/R).

More generally, we will consider a warped space with metric

ds2 = e−2A(y)ηµνdxµdxν − dy2, (2)

and we will take z to be defined by ey/R = z/R.

The corresponding Ricci scalar is

R = −8A′′(y) + 20A′(y)2. (3)
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The AdS/CFT Correspondence

AdS/CFT instructs us to add a field ϕj to the 5D theory for every

gauge-invariant operator Oj of the 4D theory. The 5D action

corresponds to the generating functional of the 4D theory, in

the sense that expS5D|∂ = Z[Jj] where Jj are sources for the

operators Oj in 4D, and the left-hand side is evaluated with the

boundary condition ϕj → Jj at the boundary.

It turns out that the x-independent solutions for an AdS scalar

field of mass m are z∆ and z4−∆, where m2 = ∆(∆ − 4). The

dictionary associates to a scalar operator O of dimension ∆ a

field ϕ with precisely this mass squared.
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Why Might AdS/QFT Work?

In Wilsonian RG, demanding that the final physical answers
are invariant produces a set of differential equations where the
derivatives are with respect to µ.

Recall that, in string theory, one takes worldsheet β-functions
and reinterprets them as spacetime equations of motion, which
then must arise from some effective action. Analogously, holog-
raphy reinterprets the RG equations of a theory as equations of
motion in a theory where the RG scale is a new dimension.

When the underlying field theory is conformal, the holographic
dual will live on pure AdS; QCD is only conformal in the far UV
(where it has a Gaussian fixed point), so it should have a dual
that is only asymptotically AdS.
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SVZ and OPEs

Shifman, Vainshtein, and Zakharov (1979) (hereafter SVZ) pointed

out that nonperturbative QCD generates a large gluon conden-

sate,
〈
αsGa

µνGaµν
〉
. It is a manifestation of confinement and has

calculable phenomenological implications. Consider a two-point

function for some current Jµ = q̄γµq. Assuming the validity of a

Wilsonian OPE, we can calculate in perturbation theory:

i
∫

d4xeiqx 〈Jµ(x)Jν(0)〉 = (qµqν − q2gµν)(−
1

4π2
logQ2(1 +

αs

π
) +

2mq

Q4
〈q̄q〉+

1

12πQ4

〈
αsTrG2

〉
+ · · ·) (4)

This is valid for deep Euclidean momenta Q2 = −q2 and breaks

down due to instanton contributions, which in pure Yang-Mills

only show up at Q−11.
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SVZ pointed out a powerful consequence of the OPE: through

dispersion relations, it directly relates to properties of the lightest

mesons. It is true in general that:

−
d

dQ2
Π(Q2) =

1

π

∫ ImΠ(s)ds

(s + Q2)2
. (5)

The LHS is given by the OPE, while the RHS is an experimentally

measurable quantity. With this SVZ did something clever: they

take a Borel transform, which produces a result of the form:

1

πM2

∫
ImΠ(s)e−s/M2

ds = h0 +
h2

2!(M2)2
+

h3

3!(M2)3
+ · · · (6)

The hi are calculable using the OPE, while the exponential in

the integral damps out contributions from high s. The integral

is dominated by a contribution from the lightest resonance, and

the right-hand-side is determined by the condensates.
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AdS/QCD

If we want to try to model QCD holographically, we have to

break the conformal symmetry. The easiest way is to just put a

hard wall in the space, also known as an IR brane, at some finite

zc ≈ Λ−1
QCD. This automatically gives a spectrum of resonances

located at zeroes of Bessel functions.

Detailed calculations of mesons were carried out by Erlich et.al.

(hep-ph/0501128) and da Rold and Pomarol (hep-ph/0501218).

The results are surprisingly good. Let’s try to understand why.

They considered 5D fields ALµ and ARµ corresponding to cur-

rents of the SU(2)L×SU(2)R flavor symmetry (considering only

u, d quarks), as well as a scalar X with vev proportional to

mqz + 〈q̄q〉 z3.
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The ρ meson mass is given by 2.4 z−1
c , fixing the location of

the IR wall. The ρ – a1 mass splitting is determined by the

condensate 〈q̄q〉. The pion mass then determines mq: it must

obey the Gell-Mann – Oakes – Renner relation since this model

doesn’t violate the basic current algebra assumptions.

With three inputs, the model then gets various other quantities

right to roughly 10% to 15% accuracy, including couplings gρππ,

decay constants for the mesons, and various coefficients of the

chiral Lagrangian. These aren’t all determined by chiral sym-

metry and hidden local symmetry; what’s going on? Is some

large-N approximation getting them right? Or maybe it’s all a

numerical accident?
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Another possibility: AdS gets the leading conformal (log) term

in the OPE right, the hard wall somehow mimics the gluon con-

densate, we have the proper 〈q̄q〉 condensate.... Matching these

things can enforce certain properties of light mesons as in SVZ.

But, if we consider more mesons (e.g. glueballs), they couple to

the gluon condensate differently. This is an insight of Novikov,

Shifman, Vainshtein, Zakharov (1981): not all hadrons are alike.

There are tensor q̄q and glueball states of the same dimension,

with very different couplings to
〈
αsG2

〉
. The hard-wall model will

give them the same mass. So we need some more systematic

approach to matching.
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The “Braneless” Approach

Cutting off the space in the IR with a hard wall might be a
reasonable approximation in some cases, but it’s ad hoc. We
already know that, in the perturbative regime, deviations from
conformality in QCD come from two sources: αs corrections (log
running) and condensates (power corrections).

SVZ told us that these corrections constrain the lightest mesons.
If we want a good approximation, it’s best to not add other
artificial sources of corrections!

A condensate means a field that in 5D has power law growth,
ϕ(z) ∼ z∆. As z grows, this corresponds to a large energy den-
sity! It has a backreaction on the metric and at some point
forces the space to cut off. So all we have to do is solve the
coupled Einstein – scalar equations of motion.
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Einstein Equations Made Easy

In some cases analytic solutions to the coupled Einstein – scalar
equations are easy to find using the superpotential method.
(See e.g. DeWolfe/Freedman/Gubser/Karch, hep-th/9909134).
Writing the metric as ds2 = e−2A(y)dx2 + dy2, and assuming
the scalars have a potential V (ϕ1, ϕ2, . . .),we look for a function
W (ϕ1, ϕ2, . . .) such that

V (ϕ1, ϕ2, . . .) = 18
∑
i

(
∂W

∂ϕi

)2

− 12W (ϕ1, ϕ2, . . .)2. (7)

Then the background is determined by solving:

A′(y) = W (ϕ1(y), ϕ2(y), . . .) (8)

ϕ′i(y) = 6
∂W

∂ϕi
. (9)

(Note that we’re not assuming supersymmetry.)
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An Asymptotically Free Background

Motivated by the idea of the renormalization group interpretation

of holography, we add a field φ and demand that ebφ (for some

b) be interpretable as a running gauge coupling:

ebφ =
1

log(z0/z)
=

R

y0 − y
. (10)

The superpotential is then given by W (φ) = 1
6Rb2

ebφ+W0. There

is a cancellation in the associated potential if b =
√

2/3, in which

case

V (φ) = −6e

√
2
3φ − 12. (11)
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Amusingly, if one takes a noncritical D = 5 string theory, the

central charge term, after going to Einstein frame and convert-

ing to our normalization for the scalar field, provides a potential

going as e
√

2/3φ. The extra constant term in our potential is

presumably something like the RR flux that provides the cosmo-

logical constant in Maldacena’s duality, though we don’t have

an associated S5. We won’t worry more about the string theory

interpretation for now....
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The metric we get from this superpotential has

A(y) = y +
1

4
log

R

y0 − y
. (12)

Where the coupling blows up at y0, the warp factor goes to
−∞ and hence the metric goes to zero. In particular, there is a
curvature singularity.

We can find a discrete spectrum of normalizable modes by de-
manding that they not blow up at the singularity; this plays the
role formerly played by boundary conditions on the IR wall. They
lie at 2.52, 5.45, 8.16, 10.81, .... The ratio of the first two is
2.16, rather larger than the lattice estimate of about 1.7. The
higher modes are equally spaced, not having the Regge-like be-
havior one expects for radial excitations. If we identify 2.52z−1

0
with the estimate of the first glueball mass as 1600 MeV, we
obtain z−1

0 ≈ 635 MeV.
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One can also calculate that there is a gluon condensate propor-

tional to z−4
0 in this background. To do this, we need to use

the known OPE for the two-point function to set the normal-

ization for 1
2κ2 (analogous to how 1

g2
5

was fixed in the hard-wall

AdS/QCD model). After this, we simply compute

S5D =
1

2κ2

∫
dz

(
R

z

)5
log

z0
z

(
−R−

1

2
z2φ′(z)2 −

12

R2
−

6

R2
e
√

2/3φ(z)
)

,

(13)

which after canceling UV-divergent pieces with counterterms re-

duces to S(z0) = 1
κ2z4

0
. Now, we identify this with W [J], where

we interpret 1
4g2

Y M

as a source for the operator F aµνF a
µν. However,

we also have a definite relationship between g2
Y M and z0.

16



We have e−
√

2/3φ = log z0
z , whereas g−2

Y M =
β0 log

z0
z

8π2 . Here β0 =
11
3 Nc. This tells us that taking a derivative with respect to g−2

Y M

is the same as taking:〈
1

4
F2
〉

= −
24π2

11Nc
z0

d

dz0

(
1

κ2z4
0

)
. (14)

Using the estimate of z−1
0 from the first glueball mass, this tells

us: 〈
1

2π2
F2
〉

= 0.05GeV4, (15)

which is roughly the size expected on the basis of lattice results.

(Work in progress – don’t trust the number yet!)
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Analyticity

Ordinary perturbation theory has an unphysical pole at ΛQCD,

which does not go away at higher orders. Such a pole cannot

be physical, on general grounds; it corresponds to no physical

particle. Shirkov and Solovtsov have proposed an analytic per-

turbation theory which matches onto the usual perturbation the-

ory but uses dispersion relations and the Källén-Lehmann repre-

sentation to enforce good analytic properties (hep-ph/9604363,

hep-ph/9909305).

Interestingly, we can re-interpret the holographic solution in a

similar light. In the metric the coefficient of dx2 is e−2A(y), so

rather than interpreting µ as z−1, we can interpret it as e−A(y)

(these agree, with small corrections, in the UV).
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Once we interpret e−A(y) as µ, we obtain an expression for

αs(µ) which doesn’t blow up until µ = 0. In particular, we find

α−1
s (µ) ∼ W (µ4/Λ4

QCD), where W is the “Lambert W-function”,

i.e. W (y) is x such that y = x exp(x).

This function has also arisen in studies of Shirkov et. al.’s “ana-

lytic peturbation theory”, though the precise functional form of

αs was slightly different in those studies. Asymptotically,

W (x) = logx− log logx +
log logx

logx
+ · · ·, (16)

but for small x, W (x) = x− x2 + 3
2x3 + · · ·.

This would seem to suggest questions about the universality

class of functions that look like asymptotic perturbation series

but have good analytic properties....
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Corrections

There are two kinds of corrections to consider. αs corrections

should appear as terms in our 5D action multiplied by higher

powers of e
√

2/3φ. Since these are essentially perturbative QCD

corrections, they are small at small z, but possibly become very

important near z = zc.

The other corrections are basically α′ corrections. We don’t have

a string theory to compute these in, but we do know the higher-

dimension operators of QCD, which have larger bulk mass (recall

m2 = ∆(∆− 4)) and so look like stringy excitations in the dual.

The first new operator to consider in pure Yang-Mills is TrF3.
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We add to the 5D theory a field χ which should couple to some

multiple of TrF3. We look for a solution with the right bulk mass,

and with some coupling to exp
√

2/3φ to provide an anomalous

dimension. For now we won’t try too hard to match the details of

perturbation theory, but instead look for an analytically solvable

solution. For this we take:

W (φ, χ) =
1

4
e
√

2/3φ + cosh(χ). (17)

The corresponding potential turns out to be:

V (φ, χ) = −15− 6e
√

2/3φ coshχ + 3cosh(2χ) (18)

= −12− 6exp
√

2/3φ + 6χ2 − 3exp
√

2/3φχ2 +O(χ4).
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The associated solution is:

e
√

2/3φ(z) =
1

log z0
z

(19)

χ(z) = log
1−

(
z
z1

)6
1 +

(
z
z1

)6 (20)

A(z) =
1

4
log

1

log z0
z

−
1

6
log

(z1
z

)6
−
(

z

z1

)6
 . (21)

Here we allow φ(z) and χ(z) to blow up at different z values,
z0 and z1. It turns out that the case z1 < z0 is unacceptable:
it violates the Gubser criterion (hep-th/0002160) that demands
that the scalar potential, evaluated on the solution, be bounded
above. This means that TrF3 cannot cause a singularity at
higher energy than TrF2, which seems intuitively reasonable.
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We have completed a preliminary calculation of the glueball spec-

trum for this background (in the case z0 = z1), neglecting mixing

effects, which are expected to be small since the modes associ-

ated with TrF3 are significantly heavier than the lightest modes

associated with TrF2. Previously the first three ratios of scalar

glueball masses were 2.16, 3.24, and 4.29; now they shift down

to 2.08, 3.04, and 3.96, coming into somewhat better agreement

with the lattice data.

It is crucial to check that the overall scale of glueball masses,

relative to the condensate of TrF2, are not shifted significantly

when the new operator is added. If they are, then our attempt to

build up a systematic approximation is failing. The condensate

calculation is in progress....
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Conclusions

• Backreaction from scalar fields dynamically cuts off the space
and avoids the ad hoc IR wall.

• Despite the singularity, the spectrum on such backreacted
backgrounds is calculable and looks similar to the spectrum
of backgrounds with a wall.

• Adding the effects of higher-dimension operators appears to
make small differences in mass ratios.

• There is an interesting interpretation of the backgrounds as
enforcing good analytic properties.
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Future

• Add flavor, see if the good results of Erlich et. al. persist.

• Understand what the relation to analytic perturbation theory

might be.

• Try to make precise the RGE / holography correspondence

and understand what it might tell us about the size of cor-

rections. Can we use existing numerical studies of RGEs to

build 5D actions and backgrounds?
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